AOML STRENGTHS

- Tropical Cyclone
 - .Dynamics/Structure
 - Precipitation and Microphysics
 - Remote sensing (active and passive)
 - .Model evaluation
- Tropical Precipitation Observations
- Radar Observations and Analysis

Characteristics of TC precipitation

- ✓ Vortex constrains small scale (time scale V_{θ}/r).
- ✓ Perfect laboratory for testing QPF techniques.
- ✓ If can't improve TC QPF, then hopeless.

Observations

- Only database of aircraft observations in hurricanes in the world.
- Have several decades of obs, including radar reflectivity, winds, precipitation, thermodynamics
- http://www.aoml.noaa.gov/hrd/project2003/microphysics.html

QPE Techniques in TCs

- Scale dependence:
 - 10-s PMS sample area
 ~1 m⁻²
 - 1-h gage sample area ~1-16000 m² (advection speed dependent)
 - 1-h radar sample area 16 km²
 - TMI sample are 25 km²
 - ≥10³ gages to cover radar/TMI sample area
- PDF narrower and skewed to smaller R as area increases

QPE techniques in TCs:

- Disdrometers, Gauges, Radars, and TRMM
 - Drop size distributions (DSD) and Z-R relations

✓DSD yeilds:

 $R \approx \sum [v(D)D^3n(D)]$

$$\begin{split} & Z \approx \Sigma \text{[D}^6 \text{n(D)]} \\ & \text{terminal velocity} \\ & \text{v(D)=} \alpha D^{0.67} \end{split}$$

√log Z vs log R Z=aR^b

Note: sample volum mismatch

Modeling Efforts

- Use MM5 now, HWRF soon
- Problem:
 - Reflectivity too high
- Test finer resolution
- Test microphysical parameterization
- Compare model results with observations, especially rainfall
- http://www.aoml.noaa.gov/hrd/project2005/rainfall.html
- http://www.aoml.noaa.gov/hrd/project2003/HWRF.html

MM5 Hi-Res Simulation

Eyewall vertical motion statistics

Rainfall statistics for observations and forecasts of 24-h rain from 1200 UTC 18 September for Isabel (2003)

	Total areal coverage of rain (x 10 ⁶ km ²)	Total rain flux (x 10 ⁶ in-km ²)	Mean R (in)
Stage4	1.201	1.536	1.28
R-CLIPER	1.936	2.191	1.13
GFDL	1.933	2.453	1.27
GFS	1.877	1.485	0.79
Eta	1.404	2.528	1.28

Plot of 24-h rain (in) from 1200 UTC 18 September for Isabel (2003) for Stage4, GFS, ETA

Eta

Acoustic Methods

- Falling raindrop creates a bubble in water
- Bubble oscillates, making sound until it comes to equilibrium (or breaks)
- Sound frequency is a function of drop size
- Distribute a set of underwater sound sensors over a wide area. Each sensor has a sample area >> rain gauge, but << radar, but these can be added to obtain a large area.
- Obtain rough (2-point) estimate of DSD
- Estimate the stage of evolution of the rain system from the sound spectra.

Underwater Noise

- Ships λ < 1 kH
- Wind
- Shrimp
- Rain Dominates 1 -30 kHz band (when present)

Rain Sound Spectra

- Distinct Shapes
- Convective

Stratiform

Wind

Schematic

Acoustical system is both simple and inexpensive to deploy. Data requirements are modest, easily handled by even the oldest, slowest PC's

Summary

- AOML has the foremost experts on tropical cyclone structure, dynamics, and microphysics.
- AOML is developing innovative methods of measuring rainfall for a variety of clients
- AOML is extensively involved in highresolution tropical cyclone modeling